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1. Introduction

One of the most intriguing features of string theory is its prediction of a multitude of

vacuum states [1 – 5]. Stabilizing these states [6] and coupling the resulting embarrassment

of riches with a population mechanism [7, 8] provided by eternal inflation [9, 10] gives

rise to the string theory landscape [11]. Physics in the landscape can be both rich and

perplexing. We aim to elucidate some relevant ideas for understanding this physics, with

the hope of improving our comprehension of the multiverse.
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Inflationary expansion divides the universe into many exponentially large domains,

each corresponding to different metastable vacuum states. In this picture tunneling between

different vacuum states causes bubbles of new vacuum to be continually nucleated. Those

with positive vacuum energy are initially static, but soon accelerate in their expansion until

the velocity of their walls asymptotically approaches that of light. If the conditions are right

inside these bubbles then a stage of slow-roll inflation will occur and the resulting observers

will see themselves in an infinitely extended, open Friedmann universe. Percolation of

successive bubbles inside of each other give us a universe that is eternally inflating and

constantly producing new inflationary universes, where structure can form, and life can

evolve.

The first step in a complete understanding of this scenario must be to find out which

vacua are possible in string theory, and to describe their typical properties [3]. Once these

vacua have been identified we will then need to study cosmological evolution during eternal

inflation in order to determine the global structure of the universe [8]. During inflation

the number of horizon-sized dS regions of space-time is continually, and exponentially,

increasing. These dS regions then ‘populate’ the many possible vacua of string theory,

realizing the great variety of the theory in a diverse and eternal universe.

The resulting picture is incredibly complex. Ultimately, our goal is to explain the

properties of our part of the multiverse, and to predict the results of future observations. To

achieve this goal one needs to calculate the probabilities of various outcomes in an eternally

inflating multiverse. This is a thorny problem, and a subject of much contention. Studying

the global structure of an eternally inflating spacetime leads to comparisons of infinite

volumes, and hence a consequent dependence on cutoff procedures [8, 12 – 17]. Escaping

cutoff problems is not impossible if one considers individual observers and concentrates

on their individual histories, ignoring the rest of the universe [18 – 22]; here, however, we

must face the problems of initial conditions and are, perhaps, led to worry about Euclidean

quantum gravity and the wave-function of the universe [23 – 25]. More importantly, this

description tends to miss some of the important features of eternal inflation.

In this paper we will leave anthropic considerations aside and concentrate on other

properties of the string theory landscape. We will focus on the existence, or otherwise,

of thermal equilibrium between populations of dS vacua. As we will see, under certain

conditions, a system of dS vacua described in comoving coordinates settles down to a state

in which the populations of these vacua are in thermal equilibrium with one another. More

precisely, the ratios of comoving volume occupied by one vacuum or another will depend

on the exponential of the entropy difference between them. An important limitation of

this simple picture is that it is valid only in comoving coordinates, which do not reward

different rates of cosmological expansion in different parts of the universe. Nevertheless,

the picture of many dS universes in a state of thermal equilibrium is very simple and

intuitively appealing, and therefore it can be very useful for understanding various features

of the string theory landscape.

On the other hand, this simple picture may be invalid when the landscape has sinks

(terminal vacua which can be tunneled to, but not from). In particular, in [26, 27] it

was shown that for a simple system consisting of 2 dS vacua and one AdS sink, naive
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expectations of thermal equilibrium are incorrect if the decay rate to the sink is sufficiently

fast. Since one expects sinks to be common in the landscape [26], it may be the case that

the disruption of thermal equilibrium between metastable dS vacua is a generic feature,

and the string theory landscape may consist of many thermally isolated ‘islands.’ The goal

of this work is to elucidate this possibility and to investigate in more detail the situations

in which the usual thermally equilibrium populations are disturbed. We will find explicit

solutions for a variety of simple configurations that may occur in the landscape, and use

these results to form a picture of how the vacua of a more realistic landscape may be

populated.

It will be found that the presence of sinks in the landscape can significantly alter the

dynamics of the inflating multiverse. One of the most dramatic and unexpected examples

of this is that when a number of high energy vacua decay to a single lower energy vacuum,

which can decay to a sink, the probability fluxes soon become dominated by the slowest

decaying, most stable vacuum. In the limiting case of this vacuum being completely stable

it makes no contribution at all to probability fluxes, as these are the results of tunneling

events between metastable vacua (see below). However, if the smallest chance of tunneling

out of this vacuum is allowed, we unexpectedly find that this tiny current comes to be

the dominant source of the probability flux. This slowest decaying vacuum may then

remain out of thermal contact with other vacua, whilst all faster decaying vacua eventually

approach thermal equilibrium with each other. This ‘tortoise and the hare’ scenario shows

explicitly the non-trivial effect of sinks on the dynamics of inflation in the string theory

landscape: They may lead to the existence of thermally isolated, slowly decaying vacua

while all other, more rapidly decaying vacua are left in thermal equilibrium.

We will also investigate the possibility that some of the AdS or Minkowski sinks could

potentially act as impassable barriers between systems of dS vacua, thus carving the land-

scape into totally disconnected ‘islands’. Such a situation would result in different regions

of the multiverse being completely isolated from one another, whilst maintaining thermal

equilibrium internally. We argue that the large number of vacua and dimensions in the

landscape, coupled with the ‘vacuum dynamics’ we find to exist in the presence of sinks,

makes the existence of such isolated regions improbable, though perhaps not impossible.

In section 2 we will review the basic mechanisms of tunneling between vacua. Following

this, in section 3 we will outline the results of [26, 27], for a simple landscape of two dS

vacua and one AdS sink. Section 4 discusses the possibility of sinks dividing the landscape

into disconnected islands. In section 5 we shall summarize the results of our investigations

into more complicated toy landscapes, highlighting some of the counter-intuitive features

that emerge. In section 6 we summarize our results. Mathematical details can be found in

the appendix.

2. Tunneling in the landscape

There are two related mechanisms for making transitions between vacua: one due to tun-

neling [28] and another due to stochastic diffusion processes [18, 29]. A somewhat more
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Figure 1: Coleman-De Luccia tunneling may go in both directions.

detailed discussion of these mechanisms, and the issues associated with them, can be found

in [27]. We summarize the salient points below.

Tunneling between vacua produces bubbles of new vacuum, that look like infinite open

Friedmann universes to observers inside. If the tunneling goes to dS space, then the bubble

expands exponentially with the velocity of its walls approaching that of light. (In comoving

coordinates these bubbles approach some maximal value and freeze. This maximal value

depends on the time when the bubble is formed, and is exponentially smaller for bubbles

formed later on [30].) If the tunneling goes to a state with a negative vacuum energy V ,

the infinite universe inside it collapses within a time of the order |V |−1/2, in Planck units.

These negative energy, AdS vacua then play the role of sinks for probability currents in

the landscape.

Let us consider two dS vacua, dSi, with vacuum energy density Vi = V (φi), figure 1.

Without taking gravity into account, the tunneling may go only from the upper minimum to

the lower minimum, but in the presence of gravity tunneling may occur in both directions,

which is emphasized in figure 1. According to Coleman and De Luccia [28], the tunneling

probability from dS1 to dS2 is given by

Γ12 = e−B = e−S(φ)+S1 , (2.1)

where S(φ) is the Euclidean action for the tunneling trajectory, and S1 = S(φ1) is the

Euclidean action for the initial configuration φ = φ1,

S1 = −
24π2

V1
< 0 . (2.2)

This action has a simple sign-reversal relation to the entropy of de Sitter space, S1:

S1 = −S1 = +
24π2

V1
. (2.3)
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Therefore the decay time of the metastable dS vacuum tdecay ∼ Γ−1
12 can be represented in

the following way:

tdecay = eS(φ)+S1 = tr eS(φ) . (2.4)

Here tr ∼ eS1 is the so-called recurrence time for the vacuum dS1.

Whereas the theory of tunneling developed in [28] was quite general, all examples of

tunneling studied there described the thin-wall approximation, where the tunneling occurs

from one minimum of the potential and proceeds directly to another minimum. In the

cases where the thin-wall approximation is not valid, the tunneling occurs not from the

minimum but from the wall, which makes interpretation of this process in terms of the

decay of the initial vacuum less trivial.

The situation becomes especially confusing when the potential is very flat on the way

from one minimum to another, V ′′ < V , in Planck units. In this case the Coleman-De

Luccia (CDL) instantons describing decay of a dS space do not exist [31]; they become

replaced by Hawking-Moss (HM) instantons. According to Hawking and Moss [31], the

probability of tunneling from the minimum 1 to the minimum 2 is then given by

Γ12 = e−Stop+S1 = exp

(

−
24π2

V (φ1)
+

24π2

V (φtop)

)

. (2.5)

The HM instanton is described by the Euclidean version of dS space corresponding to the

top of the potential barrier, φ = φtop.

Unlike the thin-wall CDL solution, the HM solution does not interpolate between the

two different minima of V (φ), and therefore debates on the validity of the HM result con-

tinue even now [32]. One may wonder why we should consider such instantons instead of

considering the instantons corresponding to the dS space in the next minimum; the result-

ing tunneling action would be much smaller. Moreover, one may consider a string theory

landscape with many minima and maxima separated by a sequence of barriers. Then one

could wonder whether the HM tunneling suppression applies only to the tunneling between

the nearby vacua, or if it can describe direct tunneling to distant minima, ignoring all inter-

mediate barrier except the last one [7, 32]. One of the best attempts to clarify this situation

was made by Gen and Sasaki [33], who described the tunneling using Hamiltonian methods

in quantum cosmology, which avoided many ambiguities of the Euclidean approach. But

even their investigation does not allow us to answer the last of these questions.

A proper interpretation of the Hawking-Moss tunneling was achieved only after the

development of the stochastic approach to inflation [8, 18, 29, 34]. One may consider

quantum fluctuations of a light scalar field φ with m2 = V ′′ ¿ H2 = V/3. During each

time interval δt = H−1 this scalar field experiences quantum jumps with the wavelength

∼ H−1, and with a typical amplitude δφ = H/2π. As a result, quantum fluctuations lead

to a local change in amplitude of the field φ, which looks homogeneous on the horizon scale

H−1. From the point of view of a local observer, this process looks like a Brownian motion

of the homogeneous scalar field. If the potential has a dS minimum at φ1 À H2/m, then

eventually the probability distribution to find the field with the value φ at a given point
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becomes (almost) time-independent,

P (φ) ∼ exp

(

−
24π2

V (φ1)
+

24π2

V (φ)

)

. (2.6)

The distribution P (φ) gives the probability to find the field φ at a given point, and

has a simple interpretation as the fraction of comoving volume of the universe in each

of the dS vacua, or, equivalently, the fraction of time the field spends in a vicinity of its

value φ along the Brownian trajectory. Up to a sub-exponential factor, this distribution

shows the density of points with a given value of the field φ along its Brownian trajectory.

This implies that, up to a sub-exponential factor, the typical time required for the field, at

any given point in comoving coordinates, to move from its equilibrium value φ1 and climb

to the top of the barrier is proportional to P−1(φtop) ∼ exp
(

24π2

V (φ1) −
24π2

V (φtop)

)

[7]. Once

the scalar field climbs to the top of the barrier, it can fall from it to the next minimum,

which completes the process of “tunneling” in this regime. That is why the probability to

gradually climb to the local maximum of the potential at φ = φtop and then fall to another

dS minimum is given by the Hawking-Moss expression (2.5) [18, 34, 7, 29]. It is also why

tunneling to distant minima separated by many barriers is accomplished by a sequence of

transitions from one minimum to another nearby minimum, rather than by one big jump.

This last statement does not follow from the Hawking-Moss derivation of their result, but

is apparent from the stochastic approach to inflation.

A necessary condition for the derivation of eq. (2.6) using the stochastic approach

to inflation in [8, 18, 29, 34] is the requirement that m2 = V ′′ ¿ H2 = V/3. This

requirement is satisfied during slow-roll inflation, but it is violated for all known scalar

fields at the present (post-inflationary) stage of the evolution of the universe. Thus the

situation with the interpretation of the Coleman-De Luccia tunneling for V ′′ ≥ V/3 is

somewhat unsatisfactory. However, since the validity of the Coleman-De Luccia approach

was confirmed at least in some limiting cases (in the absence of gravity, and in the slow-roll

regime discussed above), in this paper we will follow the standard lore, assume that this

approach is correct, and study its consequences.

Following [35] (see also [11, 36, 38]), we will look for the probability distribution Pi to

find a given point in a state with vacuum energy Vi, and will try to generalize the results

for the probability distribution obtained above by the stochastic approach to inflation. The

main idea is to consider CDL tunneling between two dS vacua, with vacuum energies V1

and V2, such that V1 < V2, and to study the possibility of tunneling in both directions,

from V1 to V2, or vice versa.

The action on the tunneling trajectory, S(φ), does not depend on the direction in

which the tunneling occurs, but the tunneling probability does depend on it. It is given by

e−S(φ)+S1 on the way up, and by e−S(φ)+S2 on the way down [35] (for a recent discussion of

related subjects see also [37]). Let us assume that the universe is in a stationary state, such

that the comoving volume of the parts of the universe going upwards is balanced by the

comoving volume of the parts going down. This can be expressed by the detailed balance

equation

P1 e−S(φ)+S1 = P2 e−S(φ)+S2 , (2.7)
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which yields (compare with eq. (2.5))

P2

P1
= e−S2+S1 = exp

(

−
24π2

V1
+

24π2

V2

)

, (2.8)

independently of the tunneling action S(φ).

This probability distribution also has a nice thermodynamic interpretation in terms of

dS entropy S [39]:
P2

P1
= eS2−S1 = e∆S . (2.9)

Here, as before, Si = −Si. This result and its thermodynamic interpretation have played

a substantial role in the discussion of the string theory landscape [11].

Following [26, 27] we shall now show this notion of thermal equilibrium is a fragile one,

and can be destroyed by a simple extension of our model to include sinks.

3. A toy landscape: 2 dS and 1 AdS

Stationarity of the probability distribution (2.9) was achieved because the lowest dS state

did not have anywhere further to fall. Meanwhile, in string theory all dS states are

metastable, so it is always possible for a dS vacuum to decay [6]. Further, it is important

that if it decays by the production of bubbles of 10D Minkowski space, or by production

of bubbles containing a collapsing open universe with a negative cosmological constant,

then the standard mechanism of returning back to the original dS state no longer operates.

Therefore Minkowski vacua, as well as AdS vacua, work like sinks for the flow of probability

in the landscape. Because of the existence of these sinks (also known as terminal vacua),

the fraction of the comoving volume in the dS vacua will decrease in time.

Although decays from one SUSY AdS vacua to another are forbidden, uplifting [6]

breaks supersymmetry. Uplifted dS vacua can then decay to AdS by the formation of

bubbles of collapsing universes. According to [26], the typical decay rate for this process

can be estimated as Γ ∼ exp
(

CM2
p /m2

3/2

)

. For a gravitino mass, m3/2, in the 1 TeV range

one finds suppression in the range of Γ ∼ 10−1034

[26], which is much greater than the

expected rate of decay to Minkowski vacua, or to higher dS vacua, which (in vacua like

ours) is typically suppressed by factors of order 10−10120

. Other possible decay channels

for the uplifted dS space were discussed in [40 – 42].

Let us consider a simple model describing two dS minima and one AdS minimum

(denoted by 1, 2, and S in figure 2). Here, as in the rest of this paper, we work in comoving

co-ordinates. To get a visual understanding of the process of bubble formation in comoving

coordinates, one may paint black all of the parts corresponding to one of the two dS states,

and paint white the parts in the other dS state. Then, in the absence of sinks in the

landscape, the multiverse will become populated by white and black bubbles of all possible

sizes. Asymptotically, it will approach a stationary regime – on average becoming gray,

with the level of gray becoming asymptotically constant. Suppose now that some parts of

the universe may tunnel to a state with a negative cosmological constant. These parts will

collapse, so they will not return to the initial dS vacua. If we paint such parts red, then

– 7 –
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Figure 2: A potential with two dS minima and a sink.

the universe, instead of reaching a constant shade of gray, eventually will look completely

red.

To describe this process, instead of the detailed balance equation (2.7) one should use

the “vacuum dynamics” equations [20, 26]:

Ṗ1 = −J1s − J12 + J21 , (3.1)

Ṗ2 = −J2s − J21 + J12 . (3.2)

Here Jij = Pj Γji, where Γji is the decay rate of the vacuum j to bubbles of vacuum i. In

particular, J1s = P1 e−C1 is the probability current from the lower dS vacuum to the sink,

i.e. to a collapsing universe, or to a Minkowski vacuum, J2s = P2 e−C2 is the probability

current from the upper dS vacuum to the sink, J12 = P1 e−S1+|S(φ)| is the probability

current from the lower dS vacuum to the upper dS vacuum, and J21 = P2 e−S2+|S(φ)| is the

probability current from the upper dS vacuum to the lower dS vacuum. Combining this

all together, gives us the following set of equations for the probability distributions:

Ṗ1 = −P1 (Γ1s + Γ12) + P2 Γ21 , (3.3)

Ṗ2 = −P2 (Γ2s + Γ21) + P1 Γ12 . (3.4)

We ignore here possible sub-exponential corrections, which appear, e.g., due to the differ-

ence in the initial size of the bubbles etc.

Because of the decay to the sink, P1 and P2 gradually become exponentially small.

But this does not mean that the whole universe goes to the sink: The physical volume

of white and black parts of the universe continues growing exponentially, in the regime of

eternal inflation. One of the ways to account for this growth is to slice the universe by

hypersurfaces of time t measured in units of H−1. In this case, the volume of all parts of

the universe during time ∆t = 1 grow e3 times. One can describe this effect by adding the

terms 3Pi to the r.h.s. of eqs. (3.3), (3.4) [27]. As a result, the functions Pi describing the
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total volume of the different dS vacua will grow exponentially even in the presence of the

sink (if the rate of decay to the sink is not too large). In this case, the functions Pi will

correspond to the ‘pseudo-comoving’ probability distribution [27]. In this paper we will

be interested only in the ratios of the volumes of dS spaces, Pi/Pj . These ratios are not

affected by the overall growth of all parts of the universe, and therefore the ratios Pi/Pj

are the same for the comoving and pseudo-comoving probability distributions. Therefore

for simplicity we will not add the terms 3Pi to the r.h.s. of our equations, i.e. we will study

comoving probabilities.

To analyze the solutions of equations (3.3) and (3.4), let us first understand the re-

lations between their parameters. Since entropy of dS space is inversely proportional to

energy density, the entropy of the lower level is highest, S1 > S2. As the tunneling is

exponentially suppressed, we have S2 > |S(φ)|, so we obtain a hierarchy S1 > S2 > |S(φ)|,

and therefore Γ12 ¿ Γ21 ¿ 1. We will often associate the lower vacuum with our present

vacuum state, where S1 ∼ 10120.

For simplicity, we will study here the possibility that only the lower vacuum can tunnel

to the sink, Γ2s = 0. The two equations (3.3) and (3.4) can then be solved exactly to give

the general solution

P1 = C1e
− 1

2
(Γ12+Γ1s+Γ21)(t−t0) cosh

[

A

2
(t − t0)

]

, (3.5)

where C1 and t0 are constants and A2 ≡ (Γ12 + Γ1s + Γ21)
2 − 4Γ1sΓ21. Substituting back

into the Ṗ1 equation then gives the ratio

P2

P1
=

Γ12 − Γ21 + Γ1s + A tanh
[

A
2 (t − t0)

]

2Γ21

→
Γ12 − Γ21 + Γ1s + A

2Γ21
(3.6)

as t → ∞. These solutions show us that in a comoving coordinate system, in the presence

of a sink, both of P1 and P2 are decaying, whilst their ratio approaches a constant value

(i.e. their rates of decay become equal).

One may consider two interesting regimes, providing two very different types of solu-

tion. Suppose first that Γ1s ¿ Γ21, i.e. the probability to fall to the sink from the lower

vacuum is smaller than the probability of the decay of the upper vacuum. In this case one

recovers the result obtained without the sink in the previous section:

P2

P1
=

Γ12

Γ21
= eS2−S1 ¿ 1. (3.7)

It is interesting that this thermal equilibrium is maintained even in the presence of a sink

if Γ1s ¿ Γ21. Note that the required condition for thermal equilibrium is not Γ1s ¿ Γ12,

as one could naively expect, but rather Γ1s ¿ Γ21. We will call such sinks narrow.

Now let us consider the opposite regime, and assume that the decay rate of the uplifted

dS vacuum to the sink is relatively large, Γ1s À Γ21, which automatically means that

Γ1s À Γ12. In this “wide sink” regime the solution of eq. (3.6) is

P2

P1
=

Γ1s

Γ21
= eS2−|S(φ)|−C1 ≈ eS2−|S(φ)| À 1, (3.8)
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i.e. one has an inverted probability distribution. This result has a simple interpretation: If

the “thermal exchange” between the two dS vacua occurs very slowly as compared to the

rate of the decay of the lower dS vacuum, then the main fraction of the volume of the dS

vacua will be in the state with the higher energy density, because everything that flows to

the lower level rapidly falls to the sink.

4. Is the landscape transversable?

Before discussing the details of how AdS sinks can effect thermal structure in the landscape,

we will make a note of another scenario that can arise in their presence: The separation of

the landscape into disconnected regions, or islands.

Consider the simple potential shown in figure 3. One may naively expect that all

energetically favorable transitions between vacua should occur; however, this may not

be the case in the presence of sinks. In the absence of gravity we know that quantum

mechanical tunneling can only occur from higher energy vacua to lower energy ones. In

such a picture all vacua slowly tunnel to lower and lower energy, until they eventually end

up in the lowest energy ground state. Including the effects of gravity changes this situation

by allowing the possibility of tunneling upwards, to higher energy. Although going upwards

is less probable than going down, between any two vacua, the system soon settles down

into a situation where the fluxes going up and down are equal. This behavior occurs when

the population in the lower energy state far exceeds the number in the high energy state,

compensating the unlikeliness of jumping upwards by increasing the number of vacua that

could potentially make this transition. This process is known as recycling, and, for a

system of dS vacua only, allows the whole system to approach thermal equilibrium, where

the ratios of occupation numbers of any two vacua are given by the equilibrium ratios (2.9).

AdS and Minkowski sinks, which can be tunneled to, but not back from, spoil this

recycling mechanism and can disrupt the global thermal structure that would otherwise

exist. One manifestation of this effect is the altered occupation fractions Pi/Pj , discussed

in the previous section; another is the possibility of these sinks separating the landscape

into isolated regions, which may be in thermal equilibrium internally, but not with each

other. We call such regions ‘islands’.

Figure 3 shows a simple situation which may occur in the landscape; two dS vacua

with an AdS sink between them. If tunneling is allowed between the two dS vacua, then

thermal equilibrium between them can occur. Conversely, if tunneling is not allowed then

these two vacua will be totally isolated from one another.

Consider first the possibility of a Coleman-De Luccia transition from vacuum 1 to

vacuum 2. As was shown in [31], the CDL instantons exist only for V ′′ & V , where

tunneling is usually assumed to occur from one side of a potential barrier to the other, as

in figure 1. The scalar field then rolls down the potential to the minimum, where reheating

may occur if conditions are right. For the situation shown in figure 3, however, such rolling

will be down to an AdS minimum, which corresponds to a collapsing open universe. One

may speculate about the possibility of a tunneling from a collapsing space, or about the re-

emergence of the universe after the collapse, but we do not know how to study this regime

– 10 –
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Figure 3: A potential with two dS minima seperated by a sink.

in a controllable way.1 Alternatively, one may try to find the CDL instantons describing a

direct tunneling from vacuum 1 to vacuum 2, jumping over the AdS minimum.

On the other hand, if we consider V ′′ ¿ V , then the CDL instantons do not exist.

In this case we still have the Hawking-Moss instanton, and its interpretation in stochastic

inflation. However, according to the stochastic interpretation of the HM tunneling, there

can be no tunneling directly from 1 to 2. Recall that we view this scenario as representing

the scalar field tunneling to the top of the barrier through a sequence of quantum jumps and

subsequently rolling down to an adjacent vacuum. Clearly this is not a plausible transition

between 1 and 2, since the only adjacent vacuum is the central AdS sink.

Thus, in general one may encounter situations where it is not possible to travel from one

part of the landscape to another. However, it may happen that whereas the probability of

the transitions discussed above may be extremely small, they cannot be strictly forbidden;

our ‘no trespassing’ result may be just a consequence of the approximation used to study

such processes. Moreover, considering a multi-dimensional potential with many moduli

and fluxes will also add complexity, as tunneling between vacua 1 and 2 could occur in

the other dimensions. With an increasing number of dimensions it becomes increasingly

likely that tunneling will be able to occur either directly between 1 and 2, or via some

intermediary vacuum. Despite these caveats, we find it interesting that the existence of

sinks allows for the possibility of the landscape being separated into isolated islands.

In the following section we will consider the possibility of tunneling events directly

between two islands, separated by a sink. Such events could be due to a direct tunneling

via the Coleman-De Luccia instantons in the regime V ′′ > V , or due to a sequence of the

tunneling events though intermediate vacua. We will show that even if these events are

allowed and the islands are not totally isolated, they may still be thermally isolated from

one another as the sink can disrupt the equilibrium that would otherwise exist. However,

1We are grateful to Tom Banks for a discussion of this issue.

– 11 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
4

our analysis leads us to believe that if the number of dimensions in the landscape is large

enough then the existence of sinks will not be able to disrupt the tunneling in all of these

dimensions, and thermal contact will therefore be maintained. Furthermore, the ‘tortoise

and the hare’ behavior we find indicates that if a single high-energy vacuum is allowed

to decay to vacua on each of the islands then this vacuum will act as a bridge, restoring

thermal contact. For a landscape with very many vacua and dimensions, it therefore seems

implausible that thermally isolated regions should occur. We discuss this in more detail

below.

5. Non-trivial thermal structure in the landscape

In this section we will present our results and analysis of more general situations than

the simple one shown in figure 2. We explore the situations in which thermal equilibrium

(which is to say, detailed balance) between vacua is disturbed. We hope that this discussion

will be of interest to a wider audience, and can be understood without having to follow

lengthy calculations. The interested reader can then proceed to the appendix, where the

mathematical minutiae are given.

5.1 The general equation

For a system of n vacua and a single sink we can describe the evolution of the probability

measures, P , by:
dPi

dt
= −

∑

j 6=i

ΓijPi +
∑

j 6=i

ΓjiPj − ΓisPi. (5.1)

This equation is completely general: Single sinks to which many vacua can decay with

differing amplitudes, and multiple sinks to which individual vacua can decay (again with

differing amplitudes) amount to the same thing. The exact form of the general solution to

this set of equations is found in appendix A.1:

Pi =
∑

j

cije
−mjt ,

where the cij are constants of integration, and the mj are constants formed from the

transition rates, Γ. All Pi have the same functional form, and their coefficients cij are

related by factors which are functions of the Γs only.

At late times the ratios between different vacua then asymptote to the constant values:

rij ≡ lim
t→∞

Pi

Pj
, (5.2)

which can easily be found, using the solutions for Pi. Of course, finding solutions in a

generic landscapes is not easy, so we will restrict ourselves to a number of simple examples.

In section 3 we found the solution for the potential illustrated in figure 2, and proceeded

to find the asymptotic limit of the ratio P2/P1 as t → ∞. We now find simple estimates

for the asymptotic form of the ratios Pi/Pj in more generic situations.
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Figure 4: A one-dimensional potential with three positive and one negative minima.

5.2 An extended 1D potential

Consider now the extended one-dimensional potential in figure 4. Here we allow transitions

between neighboring de Sitter minima in both directions, and transitions from 1 to the AdS

sink. The equations determining the vacuum dynamics, and their solutions, are given in

appendix A.2.1.

For definiteness, we will assume that V3 > V2 > V1, and therefore Γ32 > Γ23, and

Γ21 > Γ12.

Firstly, when Γ1s ¿ Γ21, we find:

P1

P2
'

Γ21

Γ12
À 1 and

P3

P2
'

Γ23

Γ32
¿ 1.

In this limit the thermodynamic ratios (2.9) are maintained because Γ21 À Γ12 and Γ32 À

Γ23. When Γ1s À Γ21 and Γ21 ¿ Γ32, we find:

P1

P2
'

Γ21

Γ1s
¿ 1 and

P3

P2
'

Γ23

Γ32
¿ 1.

Here the thermal ratio of P1 to P2 is broken, whilst that of P2 to P3 is maintained. Lastly,

when Γ1s À Γ21 and Γ21 À Γ32, we find:

P1

P2
'

Γ21

Γ1s
¿ 1 and

P3

P2
'

Γ21

Γ32
À 1.

Now the thermal ratio of P1 to P2, and the ratio of P2 to P3, is broken.

Whilst the equations with three dS vacua are more complicated than the case for two,

it now appears that the interpretation can be straightforwardly extended. The ratio P2/P1

is not affected (to leading order) by the presence of the extra minimum, and again its form

is prescribed by the magnitude of Γ1s relative to Γ21. The new ratio P3/P2 is found to

take its thermal value if P2/P1 has a thermal ratio. If P2/P1 has its thermal ratio broken
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Figure 5: A multi-dimensional potential with three positive and one negative minima.

then the rate Γ12 becomes negligible, and the minimum 1 acts as a sink for the remaining

two dS vacua. The ratio P3/P2 can then be calculated as if they were a system of two dS

spaces with vacuum 2 being allowed to decay to a sink.

5.3 A simple “multidimensional” landscape

We now wish to consider the case of a multi-dimensional potential, which we expect to

be a slightly more realistic model of the landscape. Again, we work with an extension

of the simple case of two dS minima and one sink that was given in section 3. Now we

consider the potential shown in figure 5. Here transitions are allowed between the minima

labeled 2 and 3 and the lower minima 1, which is allowed to decay directly to the sink.

This setup models a simple potential with more than one dimension, i.e. with more than

just pairwise connections between vacua. The equations for this potential are given, and

solved, in appendix A.2.2.

Under the reasonable assumptions that Γ21 À Γ12 and Γ31 À Γ13, we find:

P2

P1
'

Γ12

Γ21
¿ 1 and

P3

P1
'

Γ13

Γ31
¿ 1

when Γ21 and Γ31 À Γ1s; whilst for Γ1s and Γ31 À Γ21 we find:

P2

P1
'

Γ1s

Γ21
À 1 and

P3

P1
'

Γ13

Γ31
¿ 1.

The case Γ1s and Γ21 À Γ31 can be found by symmetry from the above expressions, under

the transcription 2↔3.

These results have a straightforward, but slightly counter-intuitive, interpretation.

When the sink is narrow with respect to the transition rate Γ21, as well as the rate Γ31, the

thermal ratios of both P2 and P3, with respect to P1, are maintained, as expected. When

the sink is wide with respect to one of the Γs (and narrow with respect to the other), one
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of P2 and P3 will maintain its thermal ratio whilst the other does not, again, as expected.

One could expect that when the sink is wide with respect to all other transition rates, all

dS vacua will be out of equilibrium. Surprisingly, we have found that even in this case

only one of the upper vacua is out of its thermal ratio with P1, and the other is not.

Furthermore, the vacuum that is taken out of thermal equilibrium with P1 is the one with

the slowest rate of decay.

We interpret this in the following way: If the sink is wide with respect to all other

transition rates, then the magnitude of P in the vacuum that decays the quickest will

quickly become very small. The slowest decaying vacuum, despite the fact that the rate Γ

is smaller, will then be the source of the majority of the probability flux at late-times. The

small flux that is required to keep the faster decaying vacuum in its thermal ratio with the

lower vacuum is then maintained by the flux from the slower decaying vacuum, which is

forced out of its thermal ratio by the sink.

The picture of the slowest decaying vacuum dominating the behavior of the universe

may seem counter intuitive, but in fact it has a very simple interpretation: Those who

want to survive in a desert (i.e. near wide sinks) should save water.

Numerical simulations show that this behavior extends to i > 2 vacua decaying into

a single lower vacuum, which decays to a sink. If the sink is narrow with respect to all of

the other transition rates, then the asymptotic ratios Pi/P1 approach the thermal ratios

that they would have in the absence of the sink. If the sink is wide with respect to any or

all of the transition rates to the higher vacua, then it is only the slowest decaying vacuum

that is forced out of its thermal equilibrium with the lower vacuum. In this case, the out-

of-equilibrium slowest decaying vacuum will feed all other vacua, which will be in a state

of thermal equilibrium with each other.

5.4 Multiple sinks

We now have some ideas on how to extend the simple model of two dS spaces and one AdS

space to more general models with multiple dimensions and higher vacua. However, so far

we have only studied potentials in which one vacuum is allowed to decay to AdS space. In

a realistic model of the landscape it is likely that many vacua will be allowed to decay in

this way, and it is the effects of this which we now study.

5.4.1 2 dS and 2 AdS

The potential with two dS minima, shown in figure 2, can be simply extended to allow both

of the dS minima to decay to sinks. This situation is solved in appendix A.2.3. Again, we

assume Γ12 ¿ Γ21.

It can now be shown that if both the sinks are narrow (Γjs ¿ Γij) then the ratio

P2/P1 maintains its thermal value, to leading order. Similarly, if one sink is narrow, and

the other is wide (Γjs À Γij), then the leading order terms are the same as in the absence

of the narrow sink. Now, if both sinks are wide then the ratio P2/P1 is determined by the

wider sink. For example, if we have the hierarchy Γ1s À Γ2s À Γ21, then

P2

P1
'

Γ1s

Γ21
,
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Figure 6: A potential with three positive minima, the lower two of which can decay to sinks.

whilst for Γ2s À Γ1s À Γ21, we have

P2

P1
'

Γ12

Γ2s
.

5.4.2 3 dS and 2 AdS

We may also consider the case of a single higher vacuum that can decay to multiple lower

vacua, which are, in turn, able to subsequently decay to sinks. We will model this situation

by considering a potential such as that shown in figure 6, where the vacua labeled 1 and 3

are allowed to decay to sinks. The equations for this potential are investigated in appendix

A.2.4. We now have the heirarchy Γ21 À Γ12 and Γ23 À Γ32.

When both sinks are narrow, Γ1s ¿ Γ21 and Γ3s ¿ Γ23, the thermal ratios

P1

P2
=

Γ21

Γ12
À 1 and

P3

P2
=

Γ23

Γ32
À 1

are maintained. For one narrow sink and one wide (Γis À Γ2i) the narrow sink becomes

irrelevant, and the problem reduces to the extended one-dimensional potential considered

above.

For two wide sinks, if we take Γ1s À Γ3s, without loss of generality, then we always

have the ratio
P1

P2
=

Γ21

Γ1s
¿ 1.

The second ratio, P3/P2, is then determined by the relative magnitudes of Γ3s and Γ21. If

Γ3s À Γ21, then we have
P3

P2
=

Γ23

Γ3s
¿ 1;

whilst for Γ3s ¿ Γ21 we have
P3

P2
=

Γ21

Γ32
À 1.
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Figure 7: A potential with two positive minima that are allowed to decay to anti-de Sitter space.

This can be understood in terms of the previous example of two dS spaces, both connected

to sinks. If the probability charge in vacuum 1 is rapidly depleted by the fast decay rate to

the sink, Γ1s, then vacuum 1 will subsequently act as a sink for the remaining two vacua.

If decays to this new effective sink, Γ21, are faster than the decay rate Γ3s, then this new

sink will dominate. Otherwise, Γ3s will dominate.

5.4.3 Islands

Consider the potential shown in figure 7. Here there are two dS minima which are allowed

to decay to a sink. (Each of the lower dS vacua could be considered to decay to different

sinks, or to a common sink, the results are the same). We have also included two higher

vacua connected to the lower ones, and transitions are allowed between the two lower

minima. Here we hope to see the effects of having more than one vacuum decaying to a

sink. We expect that the presence of the second sink will complicate matters and allow

for the possibility of two ‘islands’ that are in thermal equilibrium internally, but not with

each other.

With our knowledge of the general solution, we know that the asymptotic attractor

solutions will be of the form:

P2 = c1e
−mt ,

P3 = nc1e
−mt = nP2 .

As shown below, under the reasonable assumption that Γ34 ¿ Γ43 and Γ21 ¿ Γ12, we find

three possible values of n and m in appendix A.2.5. In order to choose which solution

for n = P3/P2 is the relevant one, for a given set of Γs, we must evaluate which m is the

smallest. This m will correspond to the slowest decaying mode, which dominates in the

limit t → ∞; the corresponding n will then give the appropriate asymptotic ratio of P2/P3.

A flow chart is given in appendix B, which can be used to quickly identify the relevant

asymptotic form of n for any given set of Γs.
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From the flow chart it can be seen that a necessary condition to maintain a thermal

ratio between vacua 2 and 3 is that either Γ32 À Γ3s or Γ23 À Γ2s. A sufficient condition

for maintaining this ratio is either Γ23 or Γ32 À Γ2s and Γ3s. Conversely, a necessary

condition for breaking the thermal ratio between 2 and 3 is either Γ2s or Γ3s À Γ23 and

Γ32; whilst a sufficient condition is given by Γ2s and Γ3s À Γ23 and Γ32.

Two sets of solutions are relatively simple:

n1 =
Γ23

Γ32 + Γ3s
,

n2 =
Γ23 + Γ2s

Γ32
,

with the corresponding values of m being given by

m1 = Γ12 ,

m2 = Γ43 .

The expressions for m3 and n3 are somewhat more complicated, but they can be simplified

depending on the relative magnitudes of Γ23, Γ32, Γ2s and Γ3s. If Γ23 or Γ32 are the fastest

of these rates then the leading order contributions to m3 and n3 are

n3a '
Γ23

Γ32
and m3a '

Γ2sΓ32 + Γ3sΓ23

Γ23 + Γ32
,

if Γ2s is the fastest then

n3b '
Γ2s

Γ32
and m3b ' Γ32 + Γ3s

and, similarly, if Γ3s is the fastest then

n3c '
Γ23

Γ3s
and m3c ' Γ23 + Γ2s .

We will now consider the significance of each of these three solutions. We take solutions

n1 and m1 as corresponding to the situation in which the probability flux is sourced by

the slowly decaying vacuum 1; solutions n2 and m2 correspond to the situation in which

vacuum 4 is the slowest decaying, and therefore sources the probability flux; and solutions

n3 and m3 correspond to the situation where the majority of the probability flux is from

the lower vacua, 2 and 3. This interpretation is supported by the various values of m.

For m1 and m2 it can be seen immediately that the asymptotic rate of decay of the Pi

is prescribed by the rate of decay from 1 to 2 or from 4 to 3, respectively. This strongly

suggests that the vacuum dynamics of the systems corresponding to these solutions are

dominated by the flux out of vacua 1 and 4.

The interpretation of the m3/n3 solution is a little less straightforward due to its more

complicated form. When the rate of decay Γ2s is fast, m3b is the relevant solution. It can

be seen that m3b is determined by the probability flux out of vacuum 3 (recall that Γ34

has been neglected). By symmetry, when Γ3s is large m3c is the relevant solution, which is
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given by the rate of decay out of vacuum 2. When both rates of decay to the sink are small,

m3a is the relevant solution, which can be seen to be some weighted flux out of both of the

vacua 2 and 3 (analogous to the ‘reduced mass’ of two body dynamics). This justifies the

above statement that the solutions m3 and n3 correspond to a system which is dominated

by the flux out of vacua 2 and/or 3.

We again see that the asymptotic form of the ‘vacuum dynamics’ is not prescribed by

the fastest decaying vacua, as may have been naively expected, but by the slowest. These

vacua hold the majority of the comoving volume at late times, and so dominate the late

time evolution of the universe.

The late-time evolution of P2 and P3 straightforwardly gives the behavior of P1 and

P4. Using the notation p ≡ P1/P2 and r ≡ P4/P3, we obtain

p1 6=
Γ21

Γ12
, p2 =

Γ21

Γ12
and p3 =

Γ21

Γ12

and

r1 =
Γ34

Γ43
, r2 6=

Γ34

Γ43
and r3 =

Γ34

Γ43
,

where subscripts i denote that the solution corresponds to mi and ni. It can be seen that if

the probability charge is being held in vacua 1 or 4, then that vacuum is out of its thermal

ratio with the lower vacuum to which it can decay, and that the two vacua on the other

side of the sink are in their thermal ratio. If the probability charge is being held in either

or both of the lower vacua, then both of the higher vacua have thermal ratios with their

respective lower vacua.

Since we have here a large variety of possibilities, let us single out some of the most

interesting regimes. Suppose first that Γ23 = Γ32 = 0, as discussed in section 4. In this

case, in the wide sink regime, vacua 1 and 2 will be out of thermal equilibrium with each

other, vacua 3 and 4 will be out of thermal equilibrium with each other, and branches (1,2)

and (3,4) will be totally disconnected.

Now let us establish some contact between these branches. If Γ23 and Γ32 are suffi-

ciently small, we will have branches (1,2) and (3,4) out of thermal equilibrium with each

other. If vacuum 1 has the slowest decay rate among all vacua, it will be out of equilibrium

with vacuum 2. However, in this case vacuum 4 will be in thermal equilibrium with vacuum

3, even if Γ23 and Γ32 are extremely small. Note that the transition to vanishing Γ23 and

Γ32 is discontinuous. This paradoxical situation is similar to the one encountered earlier:

The slowest decaying vacuum dominates the evolution of other domains, but this vacuum

becomes irrelevant if it totally decouples from other vacua. Other possibilities can be read

from the flow chart in appendix B.

The model discussed in this section shows explicitly that tunneling to sinks can break

the detailed balance between vacua that would otherwise keep different regions of the

landscape in thermal contact. This provides a mechanism by which the landscape can be

separated into different thermally isolated parts, each with a different ‘temperature’. In

a landscape with high enough dimensionality there may be more than one decay channel

between 2 and 3. This will make it more likely that thermal contact will be maintained

between various parts of the landscape.
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6. Discussion

We have, in the course of this work, carried out a detailed exploration of some toy models

of the landscape, and studied their thermal properties. Whilst these models are somewhat

limited in their scope, they have revealed to us a rich, and sometimes counter-intuitive

structure.

In general, it appears that a necessary condition for the disruption of thermal ratios

between vacua is a rapid rate of decay to an AdS space — a wide sink. Intriguingly,

however, once this condition is met, the late-time behavior of the system is controlled

by the slowest of the tunneling processes. For example, when we considered a simplified

version of a multi-dimensional landscape with a single sink (section 5.3) we found that only

the slowest decaying vacuum was shifted from its thermal ratio with the lower vacuum: All

other ratios remained in thermal equilibrium. We interpret this as being due to the more

rapidly decaying vacua quickly depleting their populations, leaving the slowest decaying

vacuum to be the primary source of probability flux. The late-time thermal behavior of

the multiverse is then determined by the weakest transitions — transitions that would

otherwise be irrelevant in the absence of a sink, or if we took the limit of their rate going

to zero.

We see a similarly interesting interplay in our “islands” example in section 5.4.3. Here,

once thermal equilibrium is disrupted by a wide sink, the late-time behavior of the system

is again determined by the slowest decaying vacuum. In this example the sink can break the

thermal contact between different regions, leaving several thermally disconnected ‘islands’.

In a more complex model there may exist intermediate vacua that can act as bridges,

restoring thermal contact between islands. Such vacua would be required to be able to decay

to both of the islands, with a non-negligible rate. As we have shown, quickly decaying vacua

are likely to be in thermal equilibrium with the lower vacua to which they are allowed to

decay. It may happen that for a realistic landscape with many dimensions and very many

vacua, the thermally isolated regions will be relatively rare. However, in order to verify

this conjecture one would need to study simultaneously a disruptive effect of a very large

number of sinks and a restoring effect of a very large number of bridges.

We anticipate that further exploration along the lines of this paper may reveal still

more interesting features, allowing us a more complete and better understood picture of

the landscape.
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A. Solving the equations

In this appendix we will elaborate on some mathematical details of the results given in the

main body of the text.
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A.1 General solution

As discussed in section 5, the equations governing the evolution of some set of P s are:

dPi

dt
= −

∑

j 6=i

ΓijPi +
∑

j 6=i

ΓjiPj − ΓisPi.

The first term on the right hand side gives the flux out of the state denoted by Pi to

all the other Pj , the second gives the flux into Pi and the third gives the flux out of Pi

and into the sink. For n different P s, we have a set of n coupled first order ordinary

differential equations. Such a set of equations can be manipulated into a single linear nth

order equation, for any one particular Pi, of the form:

n
∑

j

aj
djPi

dtj
= 0 . (A.1)

The coefficients aj can be written in terms of the transition rates, Γ. This equation has

the general solution

Pi =

n
∑

j

cje
−mjt , (A.2)

where the cj are constants of integration and the constants mj are the n roots of the nth

order polynomial
∑n

j ajm
j = 0. All other Pi can then be seen to have the same functional

form, by substitution back into the original set of equations (5.1). The coefficients of the

different modes of these other Pi will be completely determined in terms of cj and the Γs.

This gives the general solution to (5.1), for all Pi, with n arbitrary constants.

At late times the dominant mode in the solution (A.2) will be the one with the smallest

exponent, m. As all the P s have the same functional forms, the same mode will dominate

the evolution of each P at late times, and so the ratios Pi/Pj will asymptotically approach

constant values. The form of the dominant mode can now be calculated in terms of the

constant ratios qij ≡ Pi/Pj by adding all the equations (5.1) to get

(

1 +
∑

i

qij

)

Ṗj = −
(

Γjs +
∑

i

Γisqij

)

Pj , (A.3)

which can be integrated to

ln Pj = −
(Γjs +

∑

i Γisqij)

(1 +
∑

i qij)
(t − t0) , (A.4)

where t0 is an arbitrary constant. We now see that the smallest value of m, which corre-

sponds to the dominant term as t → ∞, is given by

m =
(Γjs +

∑

i Γisqij)

(1 +
∑

i qij)
> 0. (A.5)

Therefore the real part of all of the roots mi are > 0, and all the modes are decaying.

We now know that the late-time attractor solution for each of the P s is an exponentially

decaying function, and that this rate of decay is the same for each P . This allows us to
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work out the constant ratios qij , that are asymptotically approached as t → ∞. Taking

the mode with the smallest m and substituting it back into (5.1) gives us a set of n − 1

algebraic equations which can be solved for the n − 1 unknown ratios qij. The asymptotic

form of the P s is now, up to a normalization, completely solved for.

A.2 Details of particular solutions

Here we will provide the equations that were used to find the results in the main body

of the text, above. We will assume that all transition rates, Γ, are orders of magnitude

different from each other.

A.2.1 An extended 1D potential

The equations governing the system shown in figure 4 are given by

Ṗ1 = −(Γ12 + Γ1s)P1 + Γ21P2

Ṗ2 = −(Γ21 + Γ23)P2 + Γ12P1 + Γ32P3

Ṗ3 = −Γ32P3 + Γ23P2 .

We know that the solutions will be of exponential form, so we substitute the ansatz

P2 = c1e
−mt

P1 = pc1e
−mt = pP2

P3 = qc1e
−mt = qP2 ,

and find the expressions

0 = Γ23 + q(Γ23 + Γ21 − Γ32 − pΓ12) − Γ32q
2 (A.6)

0 = Γ21 + p(Γ21 − Γ12 − Γ1s + Γ23 − qΓ32) − Γ12p
2 ,

or

0 = (Γ32q − Γ23)(1 + q + p) − Γ1spq (A.7)

0 = (Γ12p − Γ21)(1 + q + p) + Γ1sp(1 + q) .

We find three sets of solutions. Firstly, when Γ1s ¿ either Γ12 or Γ21, we see from

equations (A.6) that:

p '
Γ21

Γ12
À 1 and q '

Γ23

Γ32
,

where we have taken Γ21 À Γ12. In this limit the thermodynamic ratios (2.9) are main-

tained. For p ¿ 1 and q ¿ 1, p and q are given by (A.7) as:

p '
Γ21

Γ12 + Γ1s
'

Γ21

Γ1s
¿ 1

q '
(Γ12 + Γ1s)Γ23

Γ12Γ32 + Γ1s(Γ32 − Γ21)
'

Γ23

Γ32 − Γ21
'

Γ23

Γ32
¿ 1
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where (Γ1s À Γ12 and Γ21) and (Γ32 À Γ21 and Γ23). Here the thermal ratio of P1 to P2 is

broken, whilst that of P2 to P3 is maintained. Lastly, for p ¿ 1 and q À 1, the solutions

to (A.7) are:

p '
Γ21

Γ12 + Γ1s
'

Γ21

Γ1s
¿ 1

q '
Γ12Γ23 + Γ1s(Γ21 + Γ23)

(Γ12 + Γ1s)Γ32
'

Γ21 + Γ23

Γ32
À 1

where (Γ1s À Γ12 and Γ21) and (Γ32 ¿ either Γ21 or Γ23). Again, the thermal ratio of P1

to P2 is broken and now the ratio of P2 to P3 is thermal if Γ21 ¿ Γ23 and not thermal if

Γ21 À Γ23. Note, that no solutions were found for p and q À 1, when the sink is wide.

These results have been verified numerically.

A.2.2 A simple multi-dimensional potential

For the setup show in figure 5 the system of equations governing the vacuum dynamics is

Ṗ1 = −(Γ12 + Γ13 + Γ1s)P1 + Γ21P2 + Γ31P3

Ṗ2 = −Γ21P2 + Γ12P1

Ṗ3 = −Γ31P3 + Γ13P1 .

Substituting the ansatz

P1 = c1e
−mt

P2 = pc1e
−mt = pP1

P3 = qc1e
−mt = qP1 ,

gives the equations

p =
(Γ31q − Γ13)(1 + q) − qΓ1s

Γ13 − Γ31q

q =
(Γ21p − Γ12)(1 + p) − pΓ1s

Γ12 − Γ21p
.

Under the reasonable assumptions that Γ21 À Γ12 and Γ31 À Γ13, for p ¿ 1 and q ¿ 1 we

have

p '
Γ12

Γ21 − Γ1s
'

Γ12

Γ21
¿ 1 and q '

Γ13

Γ31 − Γ1s
'

Γ13

Γ31
¿ 1

when Γ21 and Γ31 À Γ1s; whilst for p À 1 À q we find:

p '
Γ12 + Γ1s

Γ21
'

Γ1s

Γ21
À 1

q '
Γ13(Γ12 + Γ1s)

Γ12Γ31 + Γ1sΓ31 − Γ1sΓ21
'

Γ13

Γ31
¿ 1

when Γ1s and Γ31 À Γ21. The case q À 1 À p can be found by symmetry from the

above expressions, under the transcription 2↔3 and p ↔ q. We find no consistent solution

exists with p À 1 and q À 1. These solutions have been numerically verified in the limits

indicated above.
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A.2.3 Two de Sitter and two sinks

The dynamical equations for this situation are given by:

Ṗ1 = −(Γ12 + Γ1s)P1 + Γ21P2

Ṗ2 = −(Γ21 + Γ2s)P2 + Γ12P1 ,

which have the general solution:

P2

P1
=

Γ12 − Γ21 + Γ1s − Γ2s + B tanh
[

B
2 (t − t0)

]

2Γ21

→
Γ12 − Γ21 + Γ1s − Γ2s + B

2Γ21

as t → ∞. Here B2 ≡ (Γ12 + Γ21 + Γ1s + Γ2s)
2 − 4(Γ12Γ2s + Γ1sΓ21 + Γ1sΓ2s)) and the

results in the text follow from this asymptotic form.

A.2.4 Three de Sitter and two sinks

The relevant evolution equations are now:

Ṗ1 = −(Γ12 + Γ1s)P1 + Γ21P2

Ṗ2 = −(Γ21 + Γ23)P2 + Γ12P1 + Γ32P3

Ṗ3 = −(Γ32 + Γ3s)P3 + Γ23P2

which yield

0 = Γ23 + q(Γ23 + Γ21 − Γ3s − Γ32 − pΓ12) − Γ32q
2 (A.8)

0 = Γ21 + p(Γ21 − Γ12 − Γ1s + Γ23 − qΓ32) − Γ12p
2 ,

or

(1 + q)(pΓ1s + qΓ3s) = (1 + p + q)(qΓ3s − pΓ12 + Γ21) (A.9)

(1 + p)(pΓ1s + qΓ3s) = (1 + p + q)(pΓ1s − qΓ32 + Γ23)

where p ≡ P1/P2 and q ≡ P3/P2. When both sinks are narrow (Γ1s ¿ Γ12 and Γ3s ¿ Γ32)

it can be seen from (A.8) that the thermal ratios

P1

P2
=

Γ21

Γ12
À 1 and

P3

P2
=

Γ23

Γ32
À 1

are maintained. For one narrow sink and one wide (Γis ¿ Γi2) the narrow sink becomes

irrelevant, and the problem reduces to the one considered above.

The case of two wide sinks now remains. From (A.9), for p ¿ 1 and q ¿ 1 we obtain:

p '
Γ21

Γ12 + Γ1s
'

Γ21

Γ1s
¿ 1

q '
Γ23

Γ32 + Γ3s
'

Γ23

Γ3s
¿ 1
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whilst p ¿ 1 ¿ q gives:

p '
Γ21

Γ12 + Γ1s
'

Γ21

Γ1s
¿ 1

q '
Γ23 + Γ21 − Γ3s

Γ32
'

Γ21

Γ32
À 1

where Γ32 ¿ Γ23 ¿ Γ3s ¿ Γ21 ¿ Γ1s. The remaining case p À q À 1 has no solutions

(given two wide sinks).

A.2.5 Islands

The potential shown in figure 7 is governed by the set of equations:

Ṗ1 = −Γ12P1 + Γ21P2

Ṗ2 = −(Γ21 + Γ23 + Γ2s)P2 + Γ12P1 + Γ32P3

Ṗ3 = −(Γ34 + Γ32 + Γ3s)P3 + Γ43P4 + Γ23P2

Ṗ4 = −Γ43P4 + Γ34P3 .

These four coupled first-order equations can be recast into a set of two coupled second-order

ordinary differential equations, for the variables P2 and P3

P̈2 + (Γ12 + Γ21 + Γ23 + Γ2s)Ṗ2 + Γ12(Γ23 + Γ2s)P2 = Γ32Ṗ3 + Γ12Γ32P3

P̈3 + (Γ43 + Γ34 + Γ32 + Γ3s)Ṗ3 + Γ43(Γ32 + Γ3s)P3 = Γ23Ṗ2 + Γ43Γ23P2 .

We know that the asymptotic attractor solutions have the form

P2 = c1e
−mt

P3 = nc1e
−mt = nP2 ,

which on substitution into the second-order equations above, give

Γ12(Γ23 + Γ2s − nΓ32 − m) − m(Γ21 + Γ23 + Γ2s − nΓ32 − m) = 0

n((Γ32 + Γ3s)(Γ43 − m) − m(Γ34 + Γ43 − m)) − Γ23(Γ43 − m) = 0 .

Under the reasonable assumption that Γ34 ¿ Γ43 and Γ21 ¿ Γ12 these two equations can

be solved to give the three possible values of n and m discussed above:

n1 =
Γ23

Γ32 + Γ3s − Γ12

n2 =
Γ23 + Γ2s − Γ43

Γ32

n3 =
Γ23 − Γ32 + Γ2s − Γ3s +

√

(Γ23 − Γ32 + Γ2s − Γ3s)2 + 4Γ23Γ32

2Γ32
,

with the corresponding values of m being given by

m1 = Γ12

m2 = Γ43

m3 =
1

2

(

Γ23 + Γ32 + Γ2s + Γ3s −
√

(Γ23 − Γ32 + Γ2s − Γ3s)2 + 4Γ23Γ32

)

.

– 25 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
4

(a)

(a)

(a)

(a)

(b)

(b)

(b)

(b)

(c)

(c)

(c)

(c)

Which of

(a) Γ23/Γ32, (b) Γ2S or (c) Γ3S

is largest?

Which of
(a) Γ12, (b)Γ43

or (c) Γ2SΓ32+Γ3SΓ23

Γ23+Γ32

is smallest?

Which of
(a) Γ12, (b)Γ43

or (c) Γ3S + Γ32
is smallest?

Which of
(a) Γ12, (b)Γ43

or (c) Γ2S + Γ23
is smallest?

n1 ≈ Γ23

Γ32

n2 ≈ Γ23

Γ32

n3 ≈ Γ23

Γ32

n1 ≈ Γ23

Γ32+Γ3s

n2 ≈ Γ2S

Γ32

n3 ≈ Γ2S

Γ32

n1 ≈ Γ23

Γ3S

n2 ≈ Γ23+Γ2S

Γ32

n3 ≈ Γ23

Γ3S

Figure 8: Flowchart showing different asymptotic limits for the “islands” example.

There is a fourth mathematically permissible value of m and n, however it corresponds to

m < 0 for all Γij and so we do not consider it to be of any physical significance (a negative

value of P makes very little sense). These results have been confirmed numerically.

B. Flow chart

Figure 8 shows the various possible asymptotic limits for the “thermal islands” discussed

in section 5.4.3.
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